

How we actually get stuff
done

Our not-so-secret recipe for software that actually
delivers.

The one with the quill:
Jakub Bogacz
Keeper of the Sacred Stack

Storyteller:
Matgorzata Petlinska-Kordel
Marketing Ringmaster

Fun-ruiner alert: forget ‘game-changer.’
Call it proof-of-quality.”

© 2025 Sanddev. All rights reserved.

Spoiler map

We don’t work. We engineer wins.
Short and sweet: code management
Here we are: branches
No one is perfect: code review
Style first, surf later: additional tools
Ride the tide: continuous integration and delivery
An app under development, not released yet
A released app, underdevelopment of the new features
Wrapping it up (with a bow)
More brain snacks

O N Hh OWOW

11
13
14
15

We don't just work. We engineer wins.

Every company has its own way of wrangling code - some do it like a symphony, others
like a rock band with no drummer. At Sanddev, we don'’t just handle code - we treat it
like royalty. With proper code management, clear standards, and continuous integration
that actually integrates, we make life better for both devs and clients.

In this little (sic!) scroll, we’ll show you how we keep code clean, projects on track, and
our clients in the loop (no smoke and mirrors, promise) from the first commit to the final
ta-da!

Short and sweet: code management

Correct code management is an essential part of developers’ work. Done right, it’s like
planting seeds that grow into healthy, bug-resistant code forests - it allows taking care of
product quality at a very early stage of the project.

In our software development process, we use Git as a code repository. It's not just a
distributed source control management tool - it's a living, breathing history book that
remembers every tweak, twist, and typo. It allows creating and managing multiple code
branches (what are branches we are about to swing into that).

Each change is bundled into a commit (think: a neatly labeled suitcase of code). Every
commit may contain changes to multiple files. Commits are identified by a commit id
and include info explaining what and why has been changed.

Below, you have a sneak preview of Git doing its little dance: the first one initializes the
application (e.g. adds an empty index.html file). The second one modifies that file by

adding the “Hello world” message.

Simple? Yes. Powerful? You bet. Silly? Only on Tuesdays.

Commit

id: 54c7f3e

Message: “[ST-02] Add hello world
message”

Commit

id: f12c1be

Message: “[ST-01] Add initial index.html
file”

Figure 1: Git stretching before a marathon.

Commits typically include code modifications required to complete tasks. At Sanddey,
we make sure every commit message includes the task ID from our tracking tool (hello,
Jira). It allows us to make integrations between tools and ease tasks tracking.

Here we are: branches

Trying to cram all your changes into one Git branch? That's like stuffing your whole
wardrobe into a carry-on: chaotic, hard to review, impossible to sort through.

At Sanddev, we prefer our code neat and clear. That's why we use branches - to keep
changes organized, reviewable, and easy to track.

In Git every code change is done on a branch. The main branch - usually called
“‘master” - usually is a root for other branches. When we want to test new features or
experiment with ideas, we create separate "feature branches." These are like side
adventures off the main trip: safe, self-contained, and unlikely to sink the whole cruise if
something goes sideways.

Commits shown in Figure 1 (see above) are performed on a single branch. The master
branch typically contains an approved, correctly working code version.

id: 54c7f3e

Message: “[ST-02] Add
hello

world message”

Branch:

id: f12c1be s
Message: “{ST-01] Add ST_02_Add_initial_mess
initial age

index.html file”

Branch:
master

Figure 2: Git branching - because cramming everything into one branch is like packing socks, sandals, and
sunscreen in the same pocket.

What you see in Figure 2 is like déja vu - with a twist, where there were two subsequent
commits divided into two branches. The master branch contains the already approved
version; the second branch contains code changes required by the new feature. Every
branch has its name, indicating the branch’s purpose. In this case, the branch name
contains a task id from an external task management tool, so no one gets lost at the
family reunion.

Now, one branch can have plenty of commits (party time!). But they should all stick to
the same theme - like guests at a themed costume party. Example in Figure 3 shows
the first commit, which adds a new message, and the second one, which changes the
message formatting. Both commits are associated with one task.

id: 1e6e540
Message: “[ST-02]

:
:
I
I
I
:
: Change
: initial text color to the
| red"”
I
: id: 54c7f3e
: Message: ‘[ST-02] Add
! hello
I world message”
:
:
I
|
|
id: f12c1be Branch:
Message: ‘[ST-01] Add ST_02_Add_initial_mess
initial age
index.html file"

Branch:
master

Figure 3: One branch, multiple commits - basically Git’s version of a dance floor.

When all changes required by the new feature are done, code polished, bugs banished,
and reviewed by fellow devs, the whole branch may be merged into the master branch.
This merge doesn’t go unnoticed. Oh, no - Git marks the occasion with a merge commit
(you can spot it strutting proudly in Figure 4). It's like snapping a group photo after a
successful quest: "We came, we coded, we conquered."

id: ad4cf3621
Merge
commit

id: 1e6e540
Message: “[ST-02]
Change

initial text color to the
red”

id: 54c7f3e

Message: “[ST-02] Add
hello

world message”

id: f12c1be Braqch;
Message: “[ST-01] Add ST_02_Add_initial_mess
initial age

index.html file”

Branch:
master

Figure 4: Merge commit = family reunion photo.

No one is perfect: code review

We know, code can be a bit like a puzzle box - fascinating, but tricky. And this is where
code review comes into play. During the code review, other developers check the code
proposed by the author. Reviewers check if code meets our quality standards, comply
with acceptance criteria, and check the impact on the other application parts.

Code review is done on a feature branch before merging that changes into the master
branch. It gives a possibility for making appropriate changes before the code goes live
to the end-users. Take a gander at Figure 5 - a visual weather map of how we keep

storms out of production.

Merge request showing that
changes are not merged yet.
On this step, the author asks
other developers for the
code review.

| W

>/
.f.’

/

id: 1e6e540

Message: “[ST-02]
Change

initial text color to red”

id: 54c7f3e

Message: “[ST-02] Add
hello

world message”

id: f12c1be Bran}:hf
Message: ‘{ST-01] Add ST_02_Add_initial_mess
initial age

index.html file”

Branch:
master

Figure 5: The moment of truth - merge request meets code review. Will it pass, or walk the plank?

In our daily work, we use trusty sidekicks like GitLab and GitHub, which allows us to
handle merge requests, code reviews, and comments easily. Curious to peek under the
hood? See our sample public repository right here.

https://about.gitlab.com/
https://github.com/
https://github.com/sandstreamdev/eoc

Reviewer rechecks merge
request and approve it.

:\?1: a4cf3621 Author merges his branch
erge into the master branch.
commit ,

id: 5acf160
Message: “[ST-02] Change
initial text color to the

green”
Merge request; changes are
not merged yet.

id: 1e6e540
Reviewer adds comment Message: ‘[ST-02]
and rejects merge request. Change

Comment: Please change
the text color to green,
according to the task’s
acceptance criteria.

initial text color to the
red”

id: 54c7f3e
Message: “[ST-02] Add

hello
world message”

Branch:
ST_02_Add_initial_mess
age

id: f12c1be

Message: “[ST-01] Add
initial

index.html file"

Branch:
master

Figure 6: Merge request strutting in like it owns the place.

When a merge request rolls in, it's showtime for the rest of the dev crew. The proposed
changes get their moment in the spotlight, and teammates check if the updates are up
to our high standards. Are the changes clean, clear, and not secretly hiding bugs?
Feedback is shared, jokes are (sometimes) made, and improvements are suggested.

Depending on the size of the project, you might get one reviewer or the whole squad

chiming in. In smaller teams, it’s often all hands on deck.

If something’s off, the merge request author goes back to the code forge to tweak and
polish. Once the fixes are in, reviewers take another peek to make sure the clouds have
cleared. Only then does the author get the green light to merge their branch into the
master.

And it's not just about catching bugs or styling code to perfection. Code review is our
way of keeping everyone in the loop. No mysterious solo code islands here - everyone
gets familiar with what's cooking. When the development team changes, e.g. some
developer leaves the project, others can work on all code parts.

Style first, surf later: additional tools

In our work, we use tools to ensure the same code style in the whole project and to
avoid easy to find issues. Before anyone gets to hit that big red “commit” button, our
trusty crew of static code analysis tools (think Prettier, ESLint, StyleLint) runs a quick
inspection.

Their job? Catch anything offbeat, like a semicolon where it shouldn’t be or a rogue tab
pretending to be a space. If something's amiss, the commit gets bounced like a bad
beach ball. The code author has to fix the mess before trying again.

10

https://prettier.io/
https://eslint.org/
https://stylelint.io/

Ride the tide: continuous integration
and delivery

Keeping tabs on what's happening, what’s working, and what might be throwing a digital
tantrum is one of the biggest keys to delivering projects that sing (instead of scream).
That’'s why we've built our process like a fine-tuned weather radar - constantly showing
you what’s happening in your project sky. Especially in Agile, where the customer can
see a working version of an application and react fast in the early stages of
development. It allows developing an application that better meets the user’s
requirements and reduces costs of further changes.

Continuous integration and delivery processes may vary, depending on the application
release state. Below you will find the two generic scenarios, which may be modified
depending on the product-specific.

An app under development, not released yet

According to our earlier code management workflow we treat the master branch like VIP
access only - we assume,that changes committed to the master branch are reviewed
and ready to be delivered to the development environment for the next dress rehearsal.

11

! Build Server l

i Latest

- approved code
, version !
Pull latest 1
changes

\ 4 1
! Perform !
[automatic tests |

Code repository
Development environment
Figure 7: Continuous integration in action - like a relay race where every commit passes the baton without tripping.

Now let's take a stroll through Figure 7, where you can see the basic scenario of
continuous integration and delivery. First, the build server pulls the latest changes from
the repository. Next up: it puts that code through a gauntlet of automated checks. Think
unit tests, static code analysis, and the digital equivalent of asking, “Are you sure you
want to wear that?”

If that step passes ("Yes, | want to wear it!"), then it builds the code and deploys a new
version of the software to the development environment.

Voila! Finally, the development environment contains all changes committed to the
master branch. The customer can see the development progress with features being
under active development, testers can poke and prod to their heart’'s content, and
developers can take pride in knowing the app is coming together = one glorious commit
at a time.

12

A released app, underdevelopment of the new features

Now imagine this: your app is out there in the wild, strutting its stuff in production. But
wait - we're cooking up something new behind the scenes. When it's time to roll out
fresh features without interrupting the show, we don’t just wing it.

When the new release is scheduled, a new branch from the master branch is created. It
is called a “release branch”. That branch is built on the build server and deployed to the
staging server. On the staging server, testers perform regression tests, and if everything
is working correctly, then the production is being updated.

Pull
release Perform
version manual
tests

Tests
pass

Code repository
Staging environment
Build Server
Production Environment
Figure 8: Continuous integration for live apps - like keeping your beach bar open 24/7 without letting any sand in the
drinks.

13

Wrapping it up (with a bow)

We’ve walked you through the two processes we never leave behind: code
management and continuous delivery. These aren’t just buzzwords we throw around
like beach balls - they’re the foundation of every successful software getaway we plan.

Proper code management has a significant impact on code quality. It is also the first
step, where we care about the quality of the delivered software.

It helps us:

spot any code crabs early - before they pinch in production,

to guarantee that the code is consistent and written in the same style - makes
code easier to read and maintain

to introduce new devs faster,

to make sure everyone on the team knows what's been changed.

Meanwhile, continuous integration & delivery is our way of keeping your beach bar open
24/7. You get a possibility to keep track of the development status, and request
changes. Development results are delivered as fast as it is possible, allowing to
introduce changes at early stages, which reduces costs significantly.

Still curious? Grab your virtual flip-flops and peek into our public GitHub lagoon.

14

https://github.com/sandstreamdev

More brain snacks

1. Simple website, “simple setup” - lessons learned (part 1) (Jekyll, Docker,
Express.js, Nginx and Jenkins FTW!) -

Pro Git

Gitflow workflow

Why google stores billions of code in a single repository?

Prettier, the code formatter

abwbd

15

https://medium.com/sandstreamdev/simple-website-simple-setup-lessons-learned-part-1-1942d9e3c960
https://git-scm.com/book/pl/v2
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://prettier.io/

	How we actually get stuff done
	We don’t just work. We engineer wins.
	Short and sweet: code management
	Here we are: branches
	No one is perfect: code review
	Style first, surf later: additional tools

	Ride the tide: continuous integration and delivery
	An app under development, not released yet
	A released app, underdevelopment of the new features

	Wrapping it up (with a bow)
	More brain snacks

